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Abstract—A fracture mechanics model of damage evolution within Hertzian stress fields in heterogeneous
brittle ceramics is developed. Discrete microcracks generate from shear faults associated with the
heterogeneous ceramic microstructure; e.g. in polycrystalline alumina, they initiate at the ends of
intragrain twin lamellae and extend along intergrain boundaries. Unlike the well-defined classical cone
fracture that occurs in the weakly tensile region outside the surface contact in homogeneous brittle solids,
the fault-microcrack damage in polycrystalline ceramics is distributed within a subsurface shear-com-
pression zone below the contact. The shear faults are modelled as sliding interfaces with friction, in the
manner of established rock mechanics descriptions but with provision for critical nucleation and matrix
restraining stresses. This allows for constrained microcrack pop-in during the loading half-cycle. Ensuing
stable microcrack extension is then analyzed in terms of a K-field formulation. For simplicity, only mode
I extension is considered specifically here, although provision exists for including mode II. The compressive
stresses in the subsurface field constrain microcrack growth during the loading half-cycle, such that
enhanced extension occurs during unloading. Data from damage observations in alumina ceramics are
used to illustrate the theoretical predictions. Microstructural scaling is a vital element in the microcrack
description: initiation is unstable only above a critical grain size, and extension increases as the grain size
increases. Internal residual stresses also play an important role in determining the extent of microcrack
damage. Implications of the results in the practical context of wear and fatigue properties are discussed.

1. INTRODUCTION

The nature of contact damage beneath an indenting
sphere on a brittle surface has been extensively
studied in homogeneous, isotropic materials like
glasses and single crystals, and in some fine-grain
ceramics. In such relatively ideal materials one
observes an elastic response up to a critical load,
whence a classical “Hertzian cone fracture” suddenly
develops outside the contact circle [1-8]. Traditional
cone fractures tend to be near-symmetrical and well-
defined, and are accordingly amenable to linear
elastic fracture mechanics analysis [3]. On the other
hand, it is possible under certain circumstances (e.g.
softer materials, harder and smaller indenters) to
suppress the cone fracture and to induce subsurface
deformation, thereby providing information on
intrinsic deformation processes in otherwise highly
brittle solids [9, 10].

Given this background, it is perhaps surprising that
relatively little attention has been given to the nature
of Hertzian damage in heterogeneous polycrystalline
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ceramics. This is especially so in those coarser
ceramics where weak interfaces and internal stresses
exert a controlling influence on the fracture process,
leading to countervailing ‘“‘toughness-curve” (T-
curve, or R-curve) effects [11]. Thus, whereas the
toughness in the Jong-crack region is enhanced by
grain-interlock bridging [12-16], in the short-crack
region it is diminished by thermal expansion
mismatch stresses at tensile grain or interphase
boundaries [15]. Recently, spherical indenter tests on
a coarse-grain alumina [17, 18] and a glass—ceramic
[19] have revealed a different kind of contact damage,
with the following distinctive features:

(i) A well-defined ‘““indentation stress—strain”
curve, independent of sphere size, indicating
a deviation from the ideal Hertzian
elasticity relations toward a ‘“‘plastic
contact” at high indentation pressures.

(i) Instead of the classical cone fracture outside
the contact circle, where the stresses are
(weakly) tensile, a microfracture initiation
and coalescence zone beneath the contact
circle, where the stresses are (strongly)
hydrostatic compressive and deviatoric in
nature.

(iii) An indication that each microfracture is pre-
ceded by some kind of stress-concentrating
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“constrained shear fault” (e.g. twin lamella,
in the case of alumina), so that the damage
is intrinsic to the microstructure.

In addition, the damage zone expands in repeat
contacts, with progressive microcrack coalescence
and ultimate material removal, indicating a true
mechanical fatigue effect. Such features are of special
interest to those concerned with the strength, fatigue
and wear of structural ceramics.

In this paper we present a generic fracture
mechanics model of the microfracture evolution
within the subsurface damage zone in polycrystalline
ceramics during a full indentation loading and
unloading cycle. The crux of our model is the
initiation and subsequent growth of a microcrack
from some shear fault within the compressive inden-
tation zone. This evolution is described in terms of a
detailed K-field formulation [11]. The envisaged
process is loosely based on the “pile-up” concept for
crack initiation in semi-brittle solids [11, 20-22]. The
process is also reminiscent of the kind of crack
initiation that occurs beneath ‘“‘sharp” (e.g. Vickers)
indenters in glasses [23,24], in rocks and other
coarse-grain materials subjected to macroscopic
confining pressures [25-29], and in compressively
loaded notched ceramics [30-32]. In setting up our
model we shall borrow from these earlier research
areas, although new elements specifically pertinent to
structural ceramics will also be introduced. The scale
of individual damage events is determined by a
characteristic microstructural dimension, grain size in
the case of polycrystalline alumina, which limits the
length of the critical shear fault and thereby
determines threshold conditions for microcracking.
Ideally, the microcracks are assumed to propagate
along constrained grain boundaries or other weak
interfaces in predominantly extensile mode (i.e. mode
I). These microcracks are, by virtue of the compres-
sive nature of the immediate subsurface contact field,
highly stable in their subsequent evolution, with
continued propagation during unloading. In actual-
ity, the geometrical constraints imposed by the grain
boundaries relative to the shear fault and Hertzian
field will inevitably result in superposed shear stresses
on the microcrack surfaces (i.e. mode II), opening the
way to frictional tractions and hence hysteresis
during unloading-reloading cycles, i.e. fatigue.

In the interest of mathematical simplicity, we
confine ourselves here to mode I microcrack extension.
Data from previous studies on polycrystalline alumina
will be used to illustrate how one may calibrate K -field
parameters in the analysis, and thence evaluate the
microcrack development through a complete Hertzian
load-unload cycle. In particular, we address the im-
portant role of grain size, in special relation to the
crack initiation (pop-in) and subsequent propagation.
We shall determine that a greater portion of the
propagation actually takes place during the unloading
half-cycle, although in a highly stable manner.
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Whereas we specifically address single-cycle, mode
I microfracture here, we foreshadow potential
extension of the model to fatigue and wear properties
by inclusion of mode II frictional tractions at the
closed microcrack interfaces. The mode II component
allows for hysteresis in cyclic loading, enabling
progressive coalescence of neighboring microcracks
and, ultimately, material removal.

2. NATURE OF DAMAGE IN HERTZIAN
CONTACT FIELD

2.1. Background experimental observations on

polycrystalline alumina

The nature of Hertzian contact damage on
polycrystalline ceramics has been examined in recent
experimental studies on alumina [17,18] and
glass—ceramics [19]. From these studies we identify
the following features:

(i) Macroscopically, the damage occurs in a region
of intense hydrostatic compression and shear stress,
reminiscent of the deformation observed in
homogeneous brittle solids in sharp-indenter fields
[10,33-37] and in rocks under confining pressures
[25-27]. The extent of deformation can be quantified
by departure from the linear Hertzian -elasticity
relation on an indentation stress—strain diagram,
mean contact pressure p, = P/na? vs contact strain
ajr [9, 10, 38]. For polycrystalline alumina in Fig. 1
[18], we see that this curve is independent of grain
size, indicating a material “yield stress”. Note the
relatively high values of p,, up to 10 GPa, typical of
contact configurations.

(ii) Microscopically, the contact deformation is
associated with the activation of discrete “‘shear
faults”, from which microcracks initiate. It is implicit
that the shear fault is obstructed in its extension, e.g.
by intersection with weak grain boundaries, to
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Fig. 1. Indentation stress-strain curve for aluminas,

obtained using tungsten carbide (WC) spheres of radius

r =1.98-12.70 mm. Inclined dashed line is Hertzian elastic

response and upper horizontal dashed line is Vickers

hardness (averaged over all grain sizes). Solid curve is an
empirical fit to the data. (After [18].)
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Fig. 2. Optical micrographs in Nomarski illumination showing half-surface (top) and section (bottom)
views of indentation sites in aluminas, grain size (a) 9 um and (b) 48 um. Indentations made at indentation
pressure p, = 8.0 GPa, using WC sphere of radius r = 3.18 mm at load P =2000 N. (After [18].)

produce a local stress concentration [11,20]. We
show representative section views in Fig. 2(a) and
2(b) for aluminas of two grain sizes, “fine”” (9 um)
and “coarse’” (48 um), at a contact pressure in the
nonlinear indentation stress—strain region. In the
fine-grain material we see limited subsurface
microcrack damage (section view), along with
classical cone crack traces (half-surface view). The
extent of subsurface microcracking is much more
apparent in the coarse-grain material. In alumina, the
shear faults are principally identifiable as intra-grain
twins, clearly visible in Fig. 2(b) [17]. Acoustic
emission data from load—unload indentation cycles
on a broad range of aluminas in Fig. 3 indicates a
pronounced increase in damage activity above a grain
size ~20 um. Note that the bulk of the activity
occurs above a contact pressure ~5 GPa during the
loading half-cycle.

The features outlined in (i) and (ii) are generic to
brittle materials, apart from the underlying sources of
the shear faults, which are material-specific (see
Section 6).

2.2. Stress field considerations

In this subsection we summarize the pertinent
characteristics of the Hertzian elastic contact field
[3, 6, 39]. The confining principal normal stresses g,
g, and o5 within the prospective damage zone prior
to deformation are so defined that o, > g, > o, nearly
everywhere (positive stress tensile). Beneath the
indentation center the trajectory of maximum
compression —a, runs parallel to the contact axis,
and that of minimum compression —o, (or —a,)
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Fig. 3. Plots of cumulative acoustic energy (arbitrary linear

scale) vs elapsed time during single load-unload indentation

cycle (constant crosshead speed) in alumina specimens

(upper diagram), using WC sphere of radius r = 3.18 mm.

Variation of contact pressure with time indicated (lower
diagram). (After [18].)
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runs perpendicular to that axis. Figure 4 shows
contours of principal normal stresses ¢, and ¢, and
principal shear stress (g, —a;), here plotted for
Poisson’s ratio v = 0.22 (appropriate to alumina). In
these plots the contact radius a determines the spatial
scale, and contact pressure p, the intensity, of the
stress field. The tensile stresses +a,, Fig. 4(a), are
relatively weak, with a maximum 0.28p, ar the
contact circle and rapid falloff outside the contact
circle. The shear stresses, Fig. 4(c), are stronger, with
maximum 0.49p, along the contact axis at depth
~0.5a on planes oriented at 45° to this axis; they are
less concentrated than their tensile counterparts, and
are confined within a zone of high biaxial hydrostatic
compression, (¢, + 7).

The damage in Fig. 2 takes place almost exclusively
within a drop-shaped zone below the contact, and
begins subsurface, indicating that it is the maximum
shear stress that primarily initiates the damage {17].
This is in striking contrast with the traditional cone
fracture which, we recall, initiates and propagates in
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Fig. 4. Stress contours in Hertzian contact ﬁeld, normalized

to p,. AA denotes contact diameter 2q. (a) Maximum

principal normal stress ¢,, (b) minimum prmcnpal normal

stress o3, and (c) principal shear stress 2(al —03) Note

region of high biaxial hydrostatlc compression 3(¢, + 6,)

beneath contact. Calculated using Poisson’s ratio v = 0,22
for alumina.

MICROCRACK INITIATION BENEATH HERTZIAN CONTACTS

Fig. 5. Deformation-microfracture damage in polycrys-

talline ceramic, grain size /. Volume element is subjected to

compressive normal stresses —og, and —o; along contact

axis below spherical indenter. Shear stresses initiate intra-

grain slip bands FF, from which intergrain extensile micro-
cracks FC extend at their constrained ends.

the tensile region outside the contact circle in Fig. 4(a)
[3, 40]. Of course, once damage does occur the field
is no longer purely elastic. However, provided we
concern ourselves primarily with conditions for the
onset of microcracking from individual shear faults
rather than with subsequent damage coalescence and
evolution into a full “plastic” zone [38], the Hertzian
field may be retained as a useful base for fracture
mechanics calculations.

In accordance with these considerations, we set up
the model for microcrack initiation shown in Fig. 5.
An incipient shear fault FF is contained in a volume
element beneath a spherical indenter in a material of
grain size / (Section 3). At their ends the faults are
constrained by some microstructural interface, e.g.
weak grain boundary, along which microcracks FC
ultimately initiate (Section 4). We do not specify the
nature of the fault, so the model is generic: however,
we do specify that the scale of the fault is determined
by /. In the limit of sufficiently large contacts, / «a,
uniform normal and shear contact stresses

6 (¥)=3(6,+0;)+1(6,—ay)cos2¥  (la)
(¥ )=1(6,— 0;)sin 2% (1b)
act on the fault plane, where ¥ is the angle between the
fault and the o, trajectory. We see directly from eqn. 1b
that the fault orientation for maximum shear stress is

¥ x~45° as pictured in Fig. 5. The corresponding
stresses acting on the extended microcrack plane are

6 (¥ —0)=1(c,+03) + (6, — 03)cos 2(¥ —0) (2a)
T(¥ —0) =L(o, — 0;)sin 2(¥ — ). (2b)

Note that in the favored orientation ¥ =~ 6 x45°
[28, 29], the shear component in equation (2b) tends
to zero.
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In typical ceramics, internal mismatch stresses also
act at individual grain boundaries, some tensile and
some compressive. Predominant in noncubic mono-
phase and two-phase materials are those residual
stresses, oy, due to thermal expansion mismatch. In
alumina these stresses have a value oy =200 MPa
[16, 41], i.e. more than an order of magnitude lower
than the contact stresses p, & 5~10 GPa in the defor-
mation region of Fig. 1. Microcracks that initiate on
tensile grain facets are more likely than those on
compressive facets to extend into adjacent grain
boundaries. Those extending microcracks that ulti-
mately coalesce with their neighbors (e.g. from con-
tact overloading, fatigue from cyclic loading, or
chemical enhancement) will become increasingly sub-
ject to sliding friction tractions across the crack
interface at adjacent compressive facets, resulting in
a progressively increasing toughness by bridging
(toughness-curve, or T-curve, behavior) [15]. We shall
regard such bridging tractions as secondary elements
in the micromechanics in this study.

3. SHEAR-FAULT MICROMECHANICS

Now consider the conditions for activation of the
closed shear fault FF in Fig. 5. To do this we resort to
the phenomenological constitutive relations adopted
by rock mechanists [25, 26], whereby the sliding faces
of the fault are subject to resistive tractions. We
acknowledge that the normal (N) contact field
stresses on the fault (F) plane in the subsurface
damage zone will usually be compressive by defining

0E=U(W)= —®gPy 3)

with oz = —0 (¥)/p, a positive coefficient (p, posi-
tive). The applied shear (S) stress on the sliding fault
will be resisted by internal stresses from the intrinsic
cohesion (e.g. twinning stress), 7z, and frictional
sliding, ppo¥, where ug is a fault friction coefficient.
Thus, again with due allowance for the negative sign
of o}, and for sign reversal of the resistance stresses
on unloading, the net shear stress may be written [25]
o =It(¥)N+upo (¥)— 15
= (Br — opp)Po — Tr»

(forward slip) (4a)

Twinned
Grain

—— Shear stress 6§

P P

Fig. 6. Twinning slip of grain across shear plane at stress ¢,
resulting in strain u//.
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Fig. 7. Plots showing shear displacement u for twinned grain

at location of maximum shear stress in Hertzian field at

pressure p,. (Pressure axis “calibrated” from alumina data

in Section 5.) Case shown corresponds to zero reverse slip,
u* < u,.

o=t (¥)—ppo (¥)+1e

= (B¢ + appp)py + 15, (backward slip) (4b)

with fg = |t (¥)|/p, another positive coefficient. Note
that invariance of the coefficients oz and fg through
the indentation cycle is contingent on complete
reversibility of the stress field.

Accordingly, a necessary requirement for faulting
to occur is that ¢ >0 in equation (4). Where the
fault interface has low cohesion but is rough
(e.g. debonded interfaces in certain particle-matrix
composites), the frictional term will dominate the
mechanics. Where the fault must first be initiated
(e.g. twinning in alumina), the cohesion term will
dominate. In the latter case provision may be necess-
ary to allow for a barrier to fault initiation, e.g. by
defining a critical nucleation cohesion stress 7§ > 7.

Continued sliding of the fault within a grain
confined in the Hertzian field is opposed by the
surrounding elastic matrix, which exerts a linear
restraining force in proportion to the shear displace-
ment u, Fig. 6. At equilibrium

o¥=xu (5)

where x is an elastic stiffness term. We may now
combine equations (4) and (5) for the contact press-
ure p, as a function of displacement u to produce
constitutive equilibrium relations for our shear fault

(62)
(6b)

Po = (ku + 1¢)/(Br — g pi ), (forward slip)
Po = (xu — t¢)/(Br + appi), (backward slip).

A plot of the function py(u) from equation (6) is
shown in Fig. 7. In this plot the upper inclined line
represents equation (6a), with slope x/(fr— apug)
and intercept 1 /(B — aF ug) On the p, axis. Similarly,
the lower inclined line represents equation (6b), with
slope 1 /(fr — apptr) and intercept — g /(B + A g ).
The vertical dashed line at u, = tz/k represents the
intersection of equation (6b) with the u axis.



1688 LAWN et al.:

Consider the potential response for load—unload
contact cycles, indicated in the plot by the arrowed
solid lines. Let us treat the case in which a critical
stress 7§ > 7 is needed to nucleate the fault. Initially,
the contact pressure p, increases without slip along
branch (1), at # = 0. At a critical pressure p, = p} a
fault pops in unstably along branch (2), until the
upper equilibrium line for forward slip is intersected.
Note that in the absence of a critical nucleation
condition the fault would initiate stably at the
intercept pressure p, = ¢ /(B — dpitp) = pp < p%, 1.€.
without pop-in. Further increase in contact pressure
to a maximum value p, = p & causes slip to continue
stably along branch (3). Now suppose we unload at
some displacement u* <u,. The system traverses
branch (4) at u*=[(Bs—oppp)ps — 1l =
constant from equation (6a). Along this unloading
branch the fault shear stress o3 =xu* remains
constant. At intersection of branch (4) with the u axis
at py =0 the system is fully unloaded, so (unless we
reverse the contact pressure, i.e. exert an adhesive
‘“‘contact tension”) we can not satisfy equation (6b)
for reverse slip. Reloading along (5) then retraces (4),
and all further cycles are constrained to this vertical
branch. In summary, the fault exerts a monotonically
increasing shear stress ¢} = ku during the loading
half-cycle and a persistent shear stress o} = xu*
during (and after) the unloading half-cycle.

Note in Fig. 7 that there is hysteresis in the first
cycle, but not in subsequent cycles. The latter kind of
hysteresis may occur at “‘overloaded” contacts, such
that the displacement at maximum load satisfies the
condition u* > u,, leading to reverse slip along
portion of the lower inclined line to p, = 0 during the
unload half-cycle. Note that reverse slip would also
occur if the cohesion were to be zero, i.e. 1z =10 in
equation (6), regardless of the maximum load,
because then both the forward and backward slip
lines would intersect the origin in Fig. 7.

4. K-FIELD ANALYSIS OF MICROCRACK
DEVELOPMENT

Consider now the evolution of a microcrack FC
from an edge F of the shear fault FF in Fig. 5. The
problem of crack initiation from sliding shear cracks
in confining triaxial compressive fields has been
considered at some length by the rock mechanics
community. Fracture mechanics treatments have
been presented by Horii and Nemat-Nasser [28] and
Ashby and Hallam [29], specifically for systems with
preexisting faults. A characteristic feature of the
microfracture in those cases is a highly stabilized
extension at all stages of evolution to “failure”, on
planes closely normal to the least compressive of the
principal stresses. In the case of alumina, it is necess-
ary to allow for a potential initiation instability from
twin pop-in. The pop-in problem bears striking
similarities to that of crack initiation from shear
faults in Vickers indentation fields [24], and it is the
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relatively straightforward stress-intensity factor
approach of that analysis that we adopt here.

4.1. Crack-plane stresses

The initial microcrack increment will be governed
by the near field associated with the shear fault, and
will search for a path of maximum local tension.
Ideally, for ¥ =45° in Fig. 5 (orientation for maxi-
mum shear on fault), this initial path corresponds to
0 = 70.5° [29]. As the microcrack extends, it becomes
influenced more strongly by the far-field contact
stresses; the optimum orientation for maximum
tension, again at ¥ = 45°, is then 6 = 45°. In reality,
the fault may be constrained by crystallography at
more unfavorable orientations, i.e. ¥ # 45°, Simi-
larly, the microcrack may be constrained to extend
along a grain or interphase boundary within the local
shear-fault field, and therefore will not necessarily
follow principal stress trajectories. Hence, in general,
the microcrack segment will experience both modes I
and IT (and III, for that matter).

Once the crack path is established, the fracture
mechanics are completely determined by the stresses
from the contact field plus any internal stresses acting
along that path. On the closed-fault (F) segment FF
in Fig. S, resolved normal (compressive) and shear
contact-field stresses o (¥) and 7 (¥) are defined in
equations (la) and (1b), respectively. The key stress
that determines subsequent fracture extension during
a full load—unload cycle is the net shear stress in
equation (4a)

0% = (Be — oppte)py — Tp, (loading)  (7a)

0% = (Br — appe)p § — 1, (unloading-reloading)
(7b)

recalling that ap = —a (¥ )/py, Pr=It (¥)l/py, and
p & the contact pressure at maximum loading, with
o3>0 always. We note that ¢} in equation (7b)
remains constant during the unloading and any
reloading half-cycles.

Similarly, for the extended open-microcrack (M)
segment FC in Fig. 5, resolved contact-field stresses
o (¥ —0)and t (¥ — 0) are defined in equation (2).
Thus, normal stresses

om=0(¥ —0)=—oayp, (®)
act throughout the loading-unloading cycle, with
oy = —0 (¥ — 0)/p, another positive coeflicient [cf.

equation (3)]. Since this stress component exerts its
maximum constraint at peak loading, the cracks will
extend during unloading as well as loading, and
conversely close during any reloading. Any shear
stresses on the otherwise extensile microcrack are
again expressible in the form [25]

a3 = (By — o v )Po — T (loading—unloading) (9a)

o3 = (Bu + dmpin )Py + Ty, (reloading)  (9b)
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with positive coefficient fy =|t (¥ — 0)|/p,, crack-
interface sliding friction coefficient uy and shear
“cohesion” stress Ty [cf. equation (5)]; again, it is
required that ¢}, > 0 for sliding. As with coefficients
og and P in equations (2) and (3), invariance of ay
and Py in equations (8) and (9) is contingent on
reversibility of the stress field.

In addition, the extensile microcracks in noncubic
polycrystals and two-phase materials are subject to
thermal expansion mismatch stresses oy.

4.2. Stress—intensity factors for Mode I extension

In this section we make simplifying assumptions
concerning the fault-microcrack geometry in Fig. 5,
to minimize mathematical complexity. Thus in our
stress-intensity factors we ignore the deflection of the
microcrack from the fault plane by treating the
system as a planar penny crack with radial coordinate
r, radius C = ¢ + /{2, subjected to stress o3 [equation
(7)] over 0 < r < /2 plus stresses a3, o [equations
(8,9)] and oy over //2 <r < C. Also, we choose the
configuration that maximizes the contact field shear
on the fault, ¥ =45°, and tension on the developed
microcrack, 6 = 45°; in this ideal case the shear stress
oy in equation (9) is zero (see below), so the
microcrack extends in pure mode I. On the other
hand, recognizing that the o3 term may be an
essential element of fatigue (e.g. from frictional
attrition at the sliding crack interface—Section 6),
provision remains in the formalism of Sections 3 and
4 for a more general, mixed-mode analysis.

These geometrical simplifications allow us to
calculate the a and f coefficients in the stress terms
of Section 4.1. Inserting ¥ =45° in equation (1)
yields fault stresses o (¥)=1%0,+0;) and
(V)= %(a, — 03); similarly, inserting ¥ =45° =0 in
equation  (2)  yields  microcrack  stresses
oY —0)=0, and 7 (¥ —0)=0. Now we are
concerned with the values of these stresses in the
subsurface damage zone, specifically at the point of
maximum shear stress at depth 0.5a beneath the
contact center and for Poisson’s ratio v =0.22 for
alumina. We find ¢,= —0.25p, [Fig. 4(a)] and
g, = —0.74p, [Fig. 4(b)] at this point, yielding ap =
—0(V)/pe=0.74 and Be=|t(¥)|/po=049, ay=
—6 (¥ —0)/p,=025 and By=|t (¥ —0)|/p,=0.
Since negative values of o3 are inadmissable in
equation (9a), the zero value of f,, guarantees mode
I extension.

To compute K-fields for the extensile microcrack in
the domain C >//2, ¢ >0, we resort to standard
relations for penny cracks subjected to crack-plane
stress distributions o (r) [11,42]. We obtain the
following stress-intensity factors [24]:

fCalculable directly from the standard stress-intensity
factor relation for penny cracks with distributed stresses

o (r) [11]

K(C)=2/(rnC)? Jcra (r)dr/(C2—r?)'2,

0
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(i) Shear-fault stress contribution. The stress o3
[equation (7)] acting uniformly over 0 <r <//2 on
the fault segment contributes

Ke(C, 1) =0a}1"fe(C/I) (10)

where the crack-size dependence is contained wholly
in the dimensionless function [24, 42]

Se(C/D) =2C/nly2{[1 — (1 - 1?/4C?)'?]
~[/2—-vl -1 =14C?y?]}. (1)

Note in the limit of large extension, C >[/2, we have
Ke=[(1 =2v)2n Y22 — v)|631%/C 37, i.e. the system
is highly stable with the same C ~** crack size
dependence as indentation cracks [11].

(@ii) Microcrack—stress contribution. The uniform
contact field stresses o} [equation (8)] acting over
1/2 <r < C on the microcrack segment contributes

Ku(C, 1) =all"fu(CI1) (12
with the dimensionless crack size function [24]}
fu(CID =2(C/rl) (1 — 12/4C )2, (13)

Note that Ky, is zero for the first microcrack growth
increment at C =[/2, ¢ = 0. Thereafter, since ¢} in
equation (8) is negative in the damage zone, Ky
increasingly constrains the extension.

(iii) Residual-stress contribution. For cracks initiat-
ing on a grain boundary facet under the action of a
uniform thermal expansion mismatch stress oy we have

KR (C, 1) = ol fo(C]]) (14)
in which the crack-size function
SR(C/D)=2(C/nl)"P(1 —17/4C?)'? (15)

has the same form as equation (13). As with K}, the
contribution Ky is zero for the first microcrack
growth  increment. At C>»I/2 we have
Kr = 2/ "")ag C ', so for tensile facets (o > 0) Ky
is a destabilizing influence in the extension.

The net K-field for microcrack extension is there-
fore the superposition of the contributions in
equations (10-15)

K(CJ1) = K¢ + Ky + Kg
=0}l "fe(Cl1) + oMl Pfu(C/1)
+ arl P (CID). (16)

Extension then occurs when the crack-tip K-field is
just sufficient to overcome the intrinsic (grain or
interphase boundary) toughness of the material,
i.e. K.=T,. Given that the dimensionless f(C/l)
functions are invariant for geometrically similar
microstructures, the quantity /2 emerges as the key
scaling quantity in the K-field formalism.

5. EFFECT OF GRAIN SIZE ON MICROCRACK
INITIATION AND EXTENSION IN ALUMINA

Allusion has been made to the role of grain size
in determining the microfracture damage in
polycrystalline materials, in both the experimental
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observations referred to in Section 2.1 (e.g. Figs 2
and 3) and the theoretical formalism just described in
Section 4.2 [e.g. /'? term in equation (16)]. In the
present section we demonstrate the capacity of our
model to provide quantitative information on this
critical microstructural scaling effect, with specific
reference to alumina.

Accordingly, along with the calibrated o and B
coefficients from Section 4.2, we assign the following
quantities for insertion into the fracture mechanics
analysis, from independent data on alumina:

(i) Grain boundary toughness T, = 2.75 MPa.m'/,
from indentation-strength tests [15]; and thermal
expansion mismatch stress oy =200 MPa, from
spectroscopic measurements [41].

(ii) Critical contact stress p& = 5.0 GPa (see Fig. 7),
corresponding to the nucleation pressure at which
faulting is first evident in indentation stress—strain
curves (Fig. 1), optical microscopy (Fig. 2) and
acoustic emission (Fig. 3) [18].

(i) Fault intercept quantity pg = tp/(Br — otplig)
from Section 3 (see Fig. 7), to evaluate ¢§ in equation
(7). We choose pp=3.0GPa to provide sensible
values below for the fully extended microcrack
dimensions (note that pp < p§, as required in Fig. 7).
If we assume that the twinning in alumina is governed
entirely by a critical cohesion stress, so that up =0,
we evaluate 1 = fepr = 1.4 GPa.

It is acknowledged that these parameter evalu-
ations are approximate, and that the fracture
mechanics formalism embodies many assumptions,
so the numerical accuracy of the calculations are
open to a degree of uncertainty.

In Fig. 8 we plot the function K.(c) from equation
16 [in conjunction with equations (7-15)] for a
selected alumina grain size / = 35 um, incrementing
Do to a peak p ¥ = 10 GPa in a complete load—unload
cycle (cf. Fig. 1). Extension occurs along the horizon-

K+ (MPa.m!/2)

Crack size, ¢ (um)

Fig. 8. Plots of function K.(c) in equation (16) for fault-
generated microcracks in alumina of grain size 35 um, for
indicated values of contact pressure p, (GPa) during load
(+) and unload (—) half-cycles. Equilibrium condition
determined by intersection with horizontal dashed line,
representing grain boundary toughness 7,. Dashed curves
at contact pressure p, < p§ = 5.0 GPa indicate region prior
to fault initiation. At p§ microcrack pops in, and thereafter
grows stably along K. = T, (circles).
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Crack size, ¢ (um)
0 1 4 9 16 25

Contact pressure, p, (GPa)

Crack size, c!/2 (um!/2)

Fig. 9. Plots of function p,(c) for equilibrium cracks
(K. =T,) for alumina at specified grain sizes (cf. Fig. 3).
Horizontal dashed line denotes critical fault pressure
p§=5.0GPa. Intercepts at ¢ =0 represent minimum
contact pressures py [equation (17)] for extension of existing
miocrocrack. For grain sizes / <20um, py>p§, and
extension occurs stably at p, = py; for [ > 20 um, py < p§,
and microcracks must first pop in at p, = p§ before stable
extension occurs.

tal equilibrium line K. = T;,. Because of the dominat-
ing influence of the K and K,, terms at small ¢ in
equation (16), the microcrack is stabilized (i.e.
dK./dc < 0), most strongly in the loading half-cycle.
However, at large ¢ the Kz term becomes dominant
in equation (16), and the K.(c) function begins to rise
on approaching the final unload state. This indicates
that the crack configuration is approaching an
instability configuration. If such a configuration were
to be achieved (e.g. by admitting water to the subsur-
face fault-microcrack to promote subcritical
extension), the unloaded microcrack would extend
unstably into the surrounding microstructure. The
material would then be on the verge of spontaneous
bulk microfracture, and its structural integrity would
be contingent on the arrest of individual microcracks
at adjacent grain facet bridges [11, 16].

It is important to remember that our model pre-
sumes the existence of a shear fault. In reality, a
microcrack cannot form unless a fault nucleates first,
at p,=p§=5.0GPa. At p§ the microcrack pops in
spontaneously, to ¢ ~ 0.2 um for our 35 um grain
size alumina in Fig. 8. As the pressure continues to
increase beyond p§ the microcrack extends stably, to
cx3pum at py=p&=10GPa. On unloading, the
microcrack continues in stable growth, at an ever-
increasing rate, to its final size ¢ & 23 um at p, =0,
i.e. less than one grain facet for this material.

The grain size effect is more clearly represented by
po(c) curves for equilibrium microcrack extension,
obtainable either directly from equation (16) [again
together with equations (7-15)] at K. =T, or from
intersection points along the horizontal dashed line in
Fig. 8. We show such a plot in Fig. 9 for alumina at
several grain sizes (cf. Fig. 3), for peak pressure
p¥=10GPa. Stable branches during both half-
cycles are again evident. The dashed line at
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Crack size, ¢ (pm)

12 T T T T

Contact pressure, p, (GPa)

Crack size, ¢/? (um!/2)

Fig. 10. Plots of p,(c) for equilibrium cracks for alumina of
grain size 35 um, showing effect of residual thermal
expansion mismatch stress og.

Po=Dp§ =5.0GPa represents the critical stress for
fault nucleation, independent of grain size /. The
intercept py(c) = py at ¢ =0 (C =[/2) represents the
minimum pressure for microcrack extension, and
does depend on

pu(l) = pe(n 'PT, 212 —1). 17

At grain sizes / <20 um in Fig. 9, py lies above the
threshold p§ line; in this region p, must be increased
above this line before a microcrack can extend. When
extension does occur, it is stable. At grain sizes
1> 20 um, py, falls below p§, so no fault exists from
which extension can occur; in this region, the loading
must first be increased to the threshold level. At
threshold the microcrack pops in along the p, = p§
line to the first branch of the p,(c) curve, producing
constrained flaws of dimension ¢ ~ 0.5 um for the
largest grain size / in Fig. 9. Through the remainder
of the loading—unloading cycle, extension is again
stable, with extension to ¢ > 100 um at largest . We
note that the scale of microcrack pop-in increases
monotonically with grain size above / ~20 ym in
Fig. 9, consistent with the acoustic emission data in
Fig. 3.

In Fig. 10 we plot the p,(c) curve for alumina at
| =35 ym using thermal mismatch stresses 6 = 200,
0, and —200 MPa. We note that while o has no
bearing on the value of the intercept stress p, at
¢ =0, it has a pronounced influence on the ultimate
microcrack extension. The contrast between final
crack sizes ¢~23um at the tensile facet and
¢ =~ 8 um at the compressive facet serves to emphasize
the important role of internal stresses in the damage
susceptibility.

6. DISCUSSION

Hertzian contact presents itself as a powerful test
procedure for investigating fundamental defor-
mation-assisted damage properties of otherwise
highly brittle polycrystalline materials. Our damage
model is based on microcrack extension from stress
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concentrations at constrained ‘“‘shear faults”. Such
faults account for the subsurface ‘‘plastic”
deformation observed in indentation stress-strain
responses, micrographic sections, and acoustic
emission records. These experimental elements have
been demonstrated for a monophase alumina ceramic
in Figs 1-3. In alumina, the shear faults are primarily
associated with the activation of intra-grain twinning.
In brittle ceramics in general, the stresses required to
activate analogous shear faults are characteristically
high, often approaching the cohesive shear strength
of the material. In glass, shear faults occur along
principal shear stress trajectories [23, 35, 43]. In single
crystals, e.g. silicon [44] or sapphire [45, 46], they
result from “block slip” on low-index crystallo-
graphic planes. In multiphase composites [19], includ-
ing rocks [25, 27], slippage occurs on some incipient
weak interface associated with microstructural
defects, e.g. sliding grain or interphase boundary
facets. In polycrystalline ceramics any one or more of
these processes may be active as incipient faults.
The closed-fault model outlined in Section 3
captures the generic essence of the precursor
deformation process. While retaining the traditional
friction and cohesion stress descriptions of shear-acti-
vated faulting in rock mechanics [25], our model
allows for fault pop-in by incorporating a fault
nucleation stress. It also allows for an additional,
constraining effect of the matrix on individual grains
within the subsurface Hertzian contact field in Fig. 4.
We recall from Fig. 6 that the fault is most commonly
expected to be active only in the first load half-cycle,
i.e. along branch (2) in Fig. 6. Continued hysteretic
activity during subsequent unloading and reloading
half-cycles is predicted only in overloaded contacts.
The principal focus of the model is the extension of
microcracks from the closed shear faults in the
constraining subsurface compressive field, again in
the spirit of traditional rock mechanics but here
expressed in terms of the K-field formalisms
previously used to describe radial crack initiation in
sharp-indenter contacts [23, 24, 33, 43, 47, 48]. In its
most general form, the model enables one to describe
a continuing crack evolution through sequential
load—unload contact cycles, with due allowance for a
mode IT component. However, our specific treatment
in Sections 4 and 5 defers consideration of the mode
II terms, in the interest of simplicity. The model
predicts microcrack pop-in during the loading half-

- cycle (required to account for acoustic emission data)

and enhanced stable extension during the unloading
half-cycle, highlighting the stabilizing influence of the
compressive field.

We have alluded to the relevance of contact
damage to several mechanical properties of brittle
ceramics, including damage accumulation [29],
material removal and wear [49, 50], and strength
degradation [17,19]. But perhaps the property of
greatest practical significance is fatigue, e.g. in
contact bearings and dental-ceramic restorations
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[51]. Experimentally, strong contact fatigue effects
have been reported in cyclic tests on coarse-grain
aluminas [17]. In such fatigue phenomena, the inbuilt
provision for frictional tractions in the crack-plane
stresses of Section 4.1, at both the fault and microc-
rack interfaces, is indispensable. Accordingly, we
foreshadow two potential contributions to contact
fatigue:

() Individual microcrack evoluation. Sliding crack
interfaces can lead to progressive frictional degra-
dation or wear in continual reversed loading. Direct
evidence for interfacial attrition has been reported in
the accumulation of wear products and debris at
cracked grain boundary interfaces in alumina
[30, 52, 53] and rocks [27,54]. With diminishing
values of the friction y and 7 terms in the shear
stresses ¢ and a3, in Section 4.1, the final crack sizes
in Figs 8 and 9 become subject to progressive
extension with number of cycles. This raises
the prospect of interaction and coalescence of
neighboring microcracks [29], leading ultimately to
fragmentation [17]. Any such process will be
enhanced by the accumulation of debris at the sliding
crack interfaces [30, 52].

(i1) Deformation zone expansion. It is well known
from rock mechanics that the compliance of
specimens in compression loading increases signifi-
cantly with the introduction of closed, but sliding,
microcracks [25). As extending microcracks begin to
interact with their neighbors in a confined contact
field, the local compliance within the damage zone
will increase, with consequent stress transfer to the
immediately surrounding matrix. Accordingly, the
adjacent matrix grains will bear more of the transmit-
ted contact load, and will themselves become suscep-
tible to faulting. The deformation zone, and thence
the microcrack density, will therefore spread
outward, exacerbating the fatigue process.

Finally, the fracture mechanics analysis has
important implications concerning material charac-
teristics in design:

(i) Grain size. As indicated in Section 5, grain size
is a critical element in the microcrack evolution, most
dramatically in the initiation. This enhancement of
fracture susceptibility with microstructural scaling,
illustrated dramatically by the contact damage in
alumina ceramics (e.g. Figs 2 and 3 [18)]), is a
widespread phenomenon in brittle fracture
[11, 55, 56]. The connotation in the special context of
ceramics processing is that minimal susceptibility to
damage accumulation requires refinement of mean
grain size. In reality, for any given material there may
be a distribution of grain sizes (as well as of crystal
misorientations), so the transition may not be abrupt,
especially in inhomogeneous stress fields like that in
Fig. 4. The result is then a progressive accumulation
of microcracks as the load is increased at given
nominal grain size, or as grain size is increased at
prescribed load [18]. Hence, not only grain size, but

MICROCRACK INITIATION BENEATH HERTZIAN CONTACTS

also grain-size variation, is subject to refinement.

(ii) Residual thermal mismatch stress. Noncubic and
two-phase ceramics are subject to thermal expansion
and other mismatch stresses at intergrain facets. The
tensile component of these stresses greatly enhances
final microcrack extension within the contact field.
Hence it would appear that microstructures with
large mismatch stresses will be most susceptible to
contact damage. On the other hand, countervailing
compressive stresses at adjacent bridging facets
constitute a most effective route to effective
crack—interface bridging in the long-crack region
[11, 15]. We have omitted considerations of bridging
tractions from our analysis, on the grounds that the
individual microcracks remain confined to a grain
facet or so. However, bridging stresses will become
important in the secondary stages of multiple crack
coalescence and material removal [29].

(iii) Nature of strength-degrading flaws. Polycrys-
talline ceramics inevitably contain a population of
pre-existing extrinsic flaws, e.g. from the processing
and surface treatments. However, in ceramics like
alumina the flaws leading to microfracture may be
activated by the very contact event itself, via the shear
faulting process. Insofar as this shear faulting process
occurs at a well-defined contact stress independent of
grain size (recall p& in Fig. 9), such flaws are governed
by material-intrinsic factors. Hence preexisting flaws
may be expected to play only a secondary role in the
micromechanics of damage accumulation (although
they might well exert a dominant influence near the
critical grain size for spontaneous general microcrack-
ing [11, 49, 50]). There is the strong suggestion here
that, contrary to common expectation, initial flaw
state may not be a decisive factor in determining the
resistance of polycrystalline ceramics to contact
fatigue.
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